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Abstract

Traditionally, the robot design process is based on the trial-and-error approach that involves re-

peated cycles of design, prototyping, and evaluation. During the process, the robot designer should

tackle multiple objectives, which are commonly in conflicting relationships. Furthermore, the robot

design assessment involves costly behavior optimization and performance evaluation in multiple en-

vironments. We propose a Multi-Objective Bilevel Bayesian optimization (MO-BBO) algorithm to

automate the co-design process of the robot design and behavior simultaneously. Since the behav-

ior should be optimized for each design and environment, we select the next design candidate in a

bilevel manner. Design parameters and behavior parameters are the high- and low-level decision

variables, respectively. We applied our algorithm to two robot co-design problems: gripper design

problem and robot arm placement problem. MO-BBO was able to effectively expand the Pareto

front in objective space on two problems.

We extend the robot arm placement problem by integrating human-likeness into objectives. To

account for human likeness, we construct trajectory-based metrics to evaluate how well the robot

arm follows the human motion trajectories extracted from the TUM Kitchen dataset and how similar

the robot arm structure is to the human arm structure while following the trajectories. Compared to

the designs generated by using reachability indices, the designs generated by the trajectory-based

metrics have better performance when following human motion trajectories, especially in terms of

collision rate and structural similarity.
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Chapter 1

Multi-Objective Bilevel Bayesian

Optimization for Robot and Behavior

Co-Design

1.1 Introduction

Robot design is difficult not only for novice designers but also for skilled engineers because

a robot’s performance is determined both by its design and its behavior. Hence, to completely

understand the impact of a given design choice, at the design step, the designer must consider the

robot’s performance that is determined by behavior adapted to the different environments. It is

important because the robot’s best performance is regarded as its ”true” performance. Finding the

optimal behavior for each design and each environment requires the designer to co-work with the

robot behavior software engineers, and it makes the whole design process more time-consuming.

So design automation tools would be useful for designers as it can reduce the difficulty of design-

ing a mechanical system as well as its behavior accordingly. Because classical design optimization

methods cannot be applied on this problem directly, co-design of behavior and design for robots

has been a topic of active research.
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Besides the behavior optimization, the robot design process is known as complicated and time-

consuming since the traditional design process is based on the trial-and-error approach. It takes

repetitive design cycles, including ideation, design, prototyping, and testing. During the design

step, the designer has to make a selection for numerous design parameters in a wide design space.

Design parameters include a robot’s morphology, kinematics, materials, and actuator parameters.

Since the design parameters are correlated and sometimes counter-intuitive in terms of its effect,

the relationship cannot be identified easily, which makes the designer hard to create a promising

design in an early stage. During the test step, the designer either observes its performance in sim-

ulation environments or directly assesses its performance by prototyping and testing in the real

world. A true assessment of its performance needs behavior optimization. In addition, designers

have to define metrics used for evaluation by considering both its objectives and deploying envi-

ronments. Furthermore, there exist the multiple objectives commonly in a conflicting relationship

which cannot be optimized simultaneously. Also the priority among them is not clearly identified

by the designer.

Prior works have addressed robot design problem computationally, but none of them cannot

be directly applied to this problem while considering all the issues at the same time. For exam-

ple, although evolutionary algorithms have been widely adopted to the robot design problem and

there is well-established multi-objective optimization literature, it requires an immense number of

experiments, which is not practical to the design problem with costly experiments. The gradient

optimization method is used to optimize topology and controller parameters in a bilevel manner

in [56]. But gradient based optimization cannot handle uncertainty and non-smoothness of the ob-

jective function. Contextual Bayesian Optimization proposed in [9] demonstrate the environment-

aware objective function, which tackles multi-task problem. Even though this method allows to

pick an optimal action for each task, each task is evaluated with a single reward function, which

cannot be applied to co-design problems with multi-objectives for multi-environments. Bayesian

optimization framework has been proposed to optimize both design and behavior in [32], but their

method does not consider multi-environments or multi-objective settings.
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We propose a Multi-Objective Bilevel Bayesian Optimization algorithm that can accommodate

all the features of robot/behavior co-design problems by modeling the two-stage, three-way cou-

pling between the robot’s design, behavior, and the environments. In the BO framework, approxi-

mation of objective functions via Gaussian process(GP) provides posterior distribution of function

values, which is much cheaper evaluation than the real observation. At each iteration, we select

design parameters by maximizing the acquisition function constructed based on the GP posterior.

The acquisition function is built to predict how the potential design can expand the Pareto front in

the objective space. We propose the bilevel framework of the acquisition function, where design

parameters are optimized at the high-level, which is followed by optimizing the behavior parameters

on the low-level for each environment. After choosing a pair of design and behavior, it is evaluated

on either the simulated system or the real system.

We employ this framework in two robot co-design problems: gripper design and arm place-

ment for a bimanual mobile manipulator. The Pareto front is successfully expanded during the

optimization and the designs on the pareto front have a wide range in each metric.

1.2 Literature Review

Codesign of robot design and behavior is a very demanding process so that skillful robotics engi-

neers should spend a tremendous amount of time and manual efforts. There are several approaches

to solve this problem computationally.

1.2.1 Local, Gradient Based Optimization

The method of moving asymptotes(MMA) [47], which is a gradient based optimization method,

was used for solving different structural optimization problems. The topology of soft robotic finger

is optimized in [56], resulting in the design that resembles human’s finger. A. Albers et al. [1]

integrated the optimization for controller parameters by simplex search algorithm (gradient-free

algorithm) into the topology optimization using MMA in order to take into account the effect of
3



coupling between the shape and controller.

Reinforcement learning(RL) has recently emerged as another way to learn a design and control

policy simultaneously. RL takes a reward function that takes into account interaction with the phys-

ical environment. Schaff et al. [44] obtain optimal design parameters while jointly optimizing its

corresponding policy by using Proximal Policy optimization. D. Ha [25] uses the policy gradient

method, REINFORCEMENT, to solve co-design problem. These works attempt to learn the policy

for each design candidate, which is the limitation that these suffer from the running time. Further-

more, those works employed policy gradient-based methods which is a form of local optimization.

Those methods yield only local improvement and cannot be easily generalized to other appli-

cations and environments.

1.2.2 Global Optimization

To address global optimization, evolutionary algorithm(EA) [15] has been widely used. This ap-

proach has been deployed in designing a soft robot [11], robot leg [40], and a gripper [42]. Further,

several algorithms that extended the evolutionary algorithm to address multi-objective optimiza-

tion have been proposed: NSGA-II [14], ParEGO [31] and MOEA/D [57]. Due to the difficulty of

specifying preference among multiple objectives in robot design process, construction of a single

objective is hard for the designer. Instead, providing optimal trade-offs may allow the designer to

obtain useful insights and a wide range of choices. Hence, multi-objective evolutionary algorithms

that generate trade-offs have been applied in designing a soft pneumatic robot [7], a mechatronic

system [13], and a flexible spacecraft [22]. Although EA can effectively solve the non-convex and

non-linear problem with continuous design space, it is not suitable when experimental costs are

computationally expensive.

There have also been approaches for modular robot design where a set of modular components

is designed to compose the robot design [26], [58], [52]. S. Ha et al. [26] used A* algorithm with

a heuristic function to guide search in discrete design space. Zhao et al. [58] searched for the best

robot design in discrete design space constrained by grammar. Recently, Whitman et al. [52] applied
4



Deep Q network to find optimal arrangement of modular designs. However, those approaches solve

discrete optimizations and the designer should design a finite set of robot modules.

1.2.3 Bayesian Optimization

Bayesian Optimization(BO) is a global optimization method for black-box function with high

evaluation costs, which can be applicable to the robotic system that is commonly expensive to

run experiment. Hence, BO has been used to optimize mechanical design [36], the control poli-

cies [50], [38], and both of them simultaneously [32]. BO consists of steps for learning statistical

models, called as surrogate functions, to approximate objective functions and determining designs

to be evaluated next by optimizing the acquisition function. The statistical model, usually Gaussian

process, provides a posterior probability distribution at a candidate that has not been evaluated yet.

Based on that, the acquisition function measures how desirable the evaluation of the objective func-

tion with a specific design is expected to be for the optimization. By optimizing for the acquisition

function, the next candidate is selected. Then we evaluate the chosen design, update the dataset,

and fit the statistical models on the updated dataset.

To tackle variations of optimization problem such as multi-task, several researchers propose ex-

tended BO frameworks. For the multi task setting, action needs to be chosen based on the contextual

information of environment. Swersky et al. proposed BO method to optimize a single action across

all tasks [48]. Contextual Bayesian Optimization proposed in [9] is more suitable approach since it

selects an optimal action for each task. Although those prior works take into account environment-

aware decisions, the decision variables are not divided into design and behavior. Multi-objective

BO was used in [2] to optimize the gait model of snake robot considering several challenges of

robot design problems: multi-objective setting, expensive cost of observation in terms of time or

money, and the noise of observation. Expected Improvement of Hypervolume(EIHV) [19] was

used as an acquisition function. However, the analytic computation of hypervolume is complex and

the authors did not consider environment-aware behavior. Liao et al. [32] adopted BO to design the

legged robot and its behavior policy using a bilevel framework same as in our method. However,
5



they only addressed the case of single-objective optimization.

To the best of our knowledge, there is none of method that incorporates all the properties of

the co-optimization problem of robot design and environment-dependent behavior for the multiple

objectives. We define the problem in general formulation in 1.3 and propose a novel method based

on BO in 1.4.

1.3 Problem Formulation

Our optimization framework aims to generate trade-off designs in the Pareto front in the metric

space. To use this framework, the robot designer should first define design parameters, behavior

parameters, how to represent the performance into the numerical score, and environments where the

design is tested with behavior. In our framework, we define the notations as below: design candidate

d in design space D, behavior parameter θ in behavior space Θ, and a finite set of environments

E. There are two kinds of performance measures: 1)Design measures, which depend on design

parameters only, for example, the mass of the gripper. 2)Behavior measures, which measure the

performance determined by design and behavior parameters in each environment. To illustrate, an

example of behavior measure can be the grasp quality of the gripper design with control policy

dependent on object shape, where the control policy is determined by behavior parameters and

each object to be grasped indicate each environment. Thus, the behavior measure is a function of

(design, behavior, environment). We consider design space D and behavior space Θ as continuous

spaces. We assume that the designer provide N design measures {fn(d)∣n = 1, . . . ,N} and M

behavior measures {gm(d, θ, e)∣m = 1, . . . ,M}.

1.3.1 Construction of Metric Space

If the robot problem with M > 1 behavior measures from a single performance evaluation, the

behavior parameters should be optimized considering all of M metrics. To simplify the problem,

we first assume that we have a single behavior measure.
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The primary optimization takes place in design metric space, so the behavior measures need to

be mapped into the design metrics which are functions of design. In this section, we introduce how

to factor out the behavior and environment variables and construct the design metric space.

We can factor out the behavior variables first. Given a design d ∈D, and an environment e ∈ E,

the behavior parameters should be optimized as follows:

θ∗d,e,m = argmax
θ∈Θ

gm(d, θ, e), (m = 1) (1.1)

After behavior is optimized, the behavior measure is evaluated as gm(d, θ∗, e).

We can also factor our the environment variables. To demonstrate, we can take the grasp quality

as an example again. Assume that we have 5 different objects to be grasped, which means ∣E∣ = 5.

There may exist several use cases, but we consider two use cases here:

1. The designer may want to obtain the optimal solutions maximizing average performance over

all environments. We can calculate the average metric as 1
∣E∣ ∑e∈E gm(d, θ∗d,e, e).

2. The designer has some preference among environments or want to categorize the environment

into some groups. For example, let the first two objects have cylindrical and the last three

objects have box-shaped. Let’s assume that the designer wants to construct the metric space as

average over cylindrical objects and average over box-sahped objects. Then the environment

set can be divided using a partition {B,C}, where B is a set of box-shaped objects and C

is a set of cylindrical objects. Two design metrics are defined as 1
2 ∑e∈C gm(d, θ∗d,e, e) and

1
3 ∑e∈B gm(d, θ∗d,e, e).

To integrate those use cases into a common equation, we introduce a weighting matrix W ∈ RP×∣E∣

where P is the number of elements in partition of environment set E. Thus, for the first case,

W = [1
5

1
5

1
5

1
5

1
5
]
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and for the second case,

W =

⎡⎢⎢⎢⎢⎢⎢⎣

1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎥⎦
Using W and optimized behaviors θ∗, we eventually represent the behavior-dependent metrics in

(1.2) that are mapped into additional design measures.

fN+M(j−1)+m(d) =Wj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gm(d, e1, θ∗d,e1,m)

⋮

gm(d, e∣E∣, θ∗d,e
∣E∣,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.2)

where Wj is the jth row of W . The dimension of metric space is R = N + PM , with the first

N equivalent to N design measures and the last PM being behavior measures multiplied by the

weighting matrix W .

Definition 1.3.1 (Design Metric). The design metric f ∶ D → RN+PM maps a design to a metric

vector f(d) = (f1(d), . . . , fR(d)).

To define Pareto optimal solutions in metric space, we have to unify whether each metric has

to be maximized or minimized. We assume that the designer provides the metric equations, for

which larger values are desirable. According to Pareto dominance relation, Pareto front is defined

as follows:

Definition 1.3.2. For two designs, a, b ∈ D and a metric f , we say a dominates b or a ≻ b if and

only if fi(a) ≥ fi(b)∀i = 1, . . . ,R and fi(a) > fi(b) for some i. A design a is non-dominated

with respect to a set S ⊂ D if no design b ∈ S dominates a. A Pareto optimal design a ∈ D is

non-dominated with respect toD. The set of Pareto optimal designs is denoted asDPO. The image

of the set DPO is called the Pareto front PF = {f(d)∣d ∈DPO}
8



1.4 Multi-Objective Bilevel Bayesian Optimization(MO-BBO)

1.4.1 Multi-objective Bayesian Optimization(BO)

We adopt BO that is an effective framework to optimize expensive black-box functions that have

no simple analytic equations as demonstrated in 1.2.3. For multi-objective optimization problems,

there are so many variants of acquisition functions, aiming to numerically measure the possibility

of each design to expand the Pareto front. The most intuitive acquisition function is the Expected

Improvement of Hypervolume Increase(EIHV) [20], which corresponds to the expected gain of

Hypervolume of evaluated designs in metric space. Hypervolume of Pareto frontH(PF) is defined

as the volume of the dominated subspace, bounded by a reference point r which is dominated by

each element of PF:

H(PF) = Vol({y ∈ RR∣∃y′ ∈ s.t.y′ ≻ y and y ≻ r}) (1.3)

The hypervolume-based improvement is then defined as I(y,PF) = H(PF∪{y})−H(PF). The

expected value is computed by using the predictive distribution of the surrogate functions. The exact

computation has been considered at most 2 dimensional space in [20]. For metric space dimension

greater than 2, expensive computation at each point naturally leads to much expensive optimization

of the acquisition function.

The other approaches based on uncertainty have recently been proposed. Uncertainty-aware

search framework [6] first use acquisition function as a virtual objective to generate Pareto front

and pick one design that maximizes uncertainty measure. Entropy based approach was proposed

in [27], in which it aims to reduce the predictive entropy of the posterior distribution over the Pareto

front.

We build a new acquisition function, Likelihood of Pareto Expansion (LPE), that is evaluated at

each design. The computation of the acquisition function is accompanied by behavior optimization,

which uses the surrogate functions approximating the performance measures attributed by design,
9



behavior, and environment. Thus, the algorithm adopts the bilevel framework, in which the design

effect is computed in the outer loop and the behavior is optimized in the inner loop.

1.4.2 Surrogate function: Gaussian Process

Gaussian Process(GP) is the most commonly used model for surrogate function. A GP is char-

acterized by its mean function, µ(⋅) and covariance function k(⋅, ⋅). Suppose we observe function

values at x1, . . . , xk. Given those observations using Bayes’ rule, we can compute the conditional

distribution of function values at points that have not been evaluated yet, called the posterior proba-

bility distribution. Conditional distribution is a simple Gaussian. This relatively cheap computation

to predict function value at a new point is used to construct acquisition functions.

We use (N +M ∣E∣) GPs to approximate N design measures and M behavior measures for ∣E∣

environments.

fn(d) ∼GPn(d;Bn) (1.4)

gm(d, e, θ) ∼GPm,e([d, θ];Bm,e) (1.5)

Let’s define the dataset B∗ = {(x(i), y(i)∗ )∣i = 1, . . . , n}. y∗(x) ∼ GP∗(x;B∗) means that y∗

shows Gaussian distribution given the dataset B∗. The conditional distribution is given by y∗ ∼

N(µ∗(x), σ∗(x)), where

µ∗(x) = kT∗,xK∗,∗,y (1.6)

σ2
∗(x) = k(x,x) − kT∗,xK

−1
∗,∗k∗,x (1.7)

and y = [y(1)∗ , . . . , y
(n)
∗ ]T is the set of observations, K∗,∗ is an n×nmatrix of kernel values with ith

row and jth column element being k(x(i), x(j)), and k∗,x is a n× 1 column matrix of kernel values

evaluated between the prior input-output pairs B∗ and x, with ith row element being k(x(i), x). As

iteration progresses, the dataset is updated, the GP is fitted taking B∗, optimizes the covariance
10



function parameters, and compute inverse matrix used in equation (1.7).

1.4.3 Acquisition function

We propose a new acquisition function, the Likelihood of Pareto Expansion(LPE) metric, which

estimates the probability that it is non-dominated by the current Pareto front based on the surrogate

function estimates. We measure the acquisition function value at design d ∈ D. First we have to

estimate the metric values at d from the posterior Gaussian distribution. For the first N design

metric, we can directly evaluate the mean µn(d) and variance σ2
n(d) of GPn. For the last PM

behavior-dependent and environment-dependent metrics, we first compute the mean µm,e(d, θ∗d,e,m)

and variance σ2
m,e(d, θ∗d,e,m) fromGPm,e at [d, θ∗d,e,m]. For (N+M(j−1)+m)th metric, a mean and

variance can be represented as Wj[µm,e1 , . . . , µm,e∣E∣]T and Wj[σ2
m,e1 , . . . , σ

2
m,e

∣E∣
]T , respectively.

Overall, metric space vector f takes on a Gaussian distribution f ∼ N(µ,Σ). From the distribution,

we draw K samples {f (k)(d)∣k = 1, . . . ,K}. We define LPE metric at d, α(d), is the ratio of the

number of non-dominated samples by the current Pareto front:

α(d) = 1

K

K

∑
k=1

1[f (k)(d) ≻ PF]. (1.8)

As the computation of the acquisition function includes the optimization of the behavior pa-

rameters, the way to optimize behavior for each environment and each design needs to be defined.

Inspired by upper-confidence based algorithm analyzed in [45], we optimize behavior for the upper

bound of a confidence interval of GPm,c as follows:

θ∗d,e,m = argmax
θ

µm,e(d, θ) + κσm,e(d, θ), (1.9)

where κ ≥ 0 trades off exploration and exploitation. Large κ value leads to more exploration,

while small κ encourage more exploitation. Equation (1.9) is a surrogate function optimization of

equation (1.1), which is used for the construction of metric space to compute acquisition function.

The performance are highly dependent on the selection of behavior parameters. In other words,
11



Algorithm 1 MO-BBO
Require: Iteration count T , initial data set Bn,Bm,e
Require: Upper-level sample size S, LPE sample size K
Require: Exploration-exploitation trade off κ
1: Fit GPn from Bn and GPm,e from Bm,e
2: Set Pareto front PF from initial data
3: for iteration t = 1, . . . , T do
4: Randomly sample S designs Dt uniformly from D
5: for d ∈Dt, e ∈ E, m = 1, . . . ,M do
6: Solve θ∗d,e,m from Equation (1.9)

7: Compute µ(d), Σ(d) from GPs and θ∗d,e,m
8: dt ← argmaxd∈Dt α(d) (Equation (1.8))
9: Evaluate measures fn(dt), gm(dt, e, θ

∗
dt,e,m

)

10: Update Pareto front PF
11: Add ⟨dt, fn(dt)⟩ to Bn
12: Add ⟨[dt, θ

∗
dt,e,m

], gm(dt, e, θ
∗
dt,e,m

)⟩ to Bm,e
13: Re-fit GPn from Bn and GPm,e from Bm,e
14: return PF

suboptimal decisions generated by the algorithm cause underestimation of the true performance of

the design, which determines the quality of the Pareto optimal solutions.

In our work, maximizing of the acquisition function over design candidates become the follow-

ing bilevel optimization problem.

argmax
d,θ∗

d,e,m

α(d), (1.10)

where θ∗d,e,m = argmax
θ

µm,e(d, θ) + κσm,e(d, θ) (1.11)

1.4.4 Algorithm Pipeline

In this section, the MO-BBO (1) algorithm is illustrated in more detail. We first draw a set of

random designs and behavior samples and evaluate the metric values. The Gaussian Processes are

fitted on the dataset and the initial Pareto front is identified before the outer loop (lines 1-2). For each

outer iteration, we find the design candidate and corresponding behavior to be evaluated. The design

and behavior are chosen by globally optimizing Equation (1.10). Since we have to budget in terms

of the computational cost spent on the optimization of the acquisition function, we approximate the
12



solution by restricting the design space to a set of S designs sampled from the design space. Then in

the low-level optimization (lines 5-6), for each design, we optimize for θ∗d,e,m using an optimization

of Equation (1.9). To optimize for behavior, we use two different methods and compare them:

brute force uniform random sampling, and a gradient-free global optimization method (DIRECT).

The number of function evaluations conducted during the low-level optimization is fmax. After

choosing the design and behavior, the remaining steps (lines 9-13) are similar to a standard Bayesian

Optimization framework: evaluate performance measures, update dataset B∗, and the Gaussian

processes are fitted on the updated dataset. Then from the observed performance measures, we

compute the design metric vector and update design metrics as well as the Pareto front.

1.4.5 Performance Discussion

We analyze the computational cost of Algorithm 1. At the tth iteration, the cost of evaluating a

surrogate function at some query point is O(t). In the low-level optimization, let’s assume J is the

cost of solving global optimization of Equation (1.9) using DIRECT or uniform sampling. It should

be done for all S designs and all M ∣E∣ behavior measures so that a cost results in O(SM ∣E∣J).

When DIRECT method is used with large sample size for the behavior parameters, this cost tends to

dominate complexity. Using the optimal behavior θ∗d,e,m for each design, the cost of evaluating the

acquisition function is O((N +M ∣E∣)Kt) since K samples are compared with the design metric

vectors in the Pareto front with size of O(t). Re-fitting a surrogate function costs O(t3). Let’s

assume that C is the cost of evaluating each metric, which is high when evaluating the behavior

measures in general. Overall, we have running time for each iteration as O((N +M ∣E∣)(KtS +

C + t3)+SM ∣E∣J). And the total running time for T iterations, we have O((N +M ∣E∣)T (KTS +

C + T 3) + TSM ∣E∣J).

1.4.6 Post-Processing: Subsampling

If the designer deals with high-dimensional design metric space, the resulting Pareto front may

contain a large number of Pareto optimal design. For example, in our experiment, 100 designs are
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used for initialization and 100 designs are generated by algorithm. The resulting Pareto optimal

designs are 56 designs, which are not easy to be investigated. To provide a subset with manageable

size, we propose a subsampling step after the design generation by the algorithm. The goal of

subsampling is to create a subset with a manageable size which has uniform distribution in the

metric space.

To solve this problem, we are inspired by the p-dispersion problem: Select p out ofn given points

(1 < p < n) in some space, where the objective is to maximize the minimum distance between any

two of the selected points. We choose one heuristic, called Greedy construction heuristic, among

several heuristics that are used to solve the p-dispersion problem [21]. This heuristic starts by

choosing the two furthest points in the Pareto front. The distance between two points are defined as

a weighted Euclidean distance between the metric vectors, with each dimension normalized to the

range [0, 1]. In each of the next (p− 2) iterations, a new point is chosen to maximize the minimum

distance to the points already in the subset. The distance between a certain point f and the points

in the subset V is calculated as: minfi∈V d(f , fi).

1.5 Experiments

We applied our algorithm to two robot co-design problems: Gripper design problem 1.5.1 and

robot arm placement problem 1.5.2.

1.5.1 Gripper Design Problem

The goal of the gripper design problem is to obtain a design that is light as well as can grasp

various objects. We can expect that these two metrics may be in a conflicting relationship, since

two-finger gripper and gripper with too short may not achieve a stable grasp.

The gripper design is basically composed of a finger with three links and a cylindrical palm.

The design parameters include finger shape and the number of fingers. Finger shape is specified by

the curvature of the curve of cross-section and the link length. The range of design space are defined
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Figure 1.1: Metric values of 200 gripper designs explored by MO-BBO, of which 16 designs are on the Pareto front.
The points colored in magenta are 4 subselected designs from the Pareto front.

by finger length (range [0.1m, 0.4m]), the number of fingers (2, 3, or 4), and finger curvature (range

[-3, 3] in m−1). The three exemplary designs are illustrated in Figure 1.2. The behavior space is

defined by the approach direction and the gripper’s rotation along z-axis. It is used for when the

grasping simulation starts. And we constructed 13 objects for an object set by combination the

geometric primitives to diversify the difficulty of grasping as shown in Figure 1.2 (d).

To evaluate the grasping ability of each design and behavior, we use grasping simulation in-

cluding steps of approach, close, lift, and shake. The simulation starts with the gripper approach-

ing the center of the object from a distance 3m. The behavior parameters determine the starting

orientation and approach direction. The approach direction is defined using spherical coordinate

(− cos θ cosφ,− sin θ cosφ,− sinφ). φ and θ have ranges [π4 ,0.99π2 ] and [0,2π], respectively. This

approach direction indicates the z-axis of the cylindrical palm which is the normal vector of a cir-

cular plane. And the z-axis rotation angle β ∈ [0, π], which is not changed during the approaching

step. The gripper approaches the object until it touches the ground or the object. If it touches the

ground first, not the object, we regard it as a failed attempt. Otherwise, the gripper closes its fingers
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(a) (0.30, 4, -1.23) (b) (0.18, 3, 1.92) (c) (0.20, 2, -1.34) (d) Object set

Figure 1.2: Gripper design problem, with (a–c) showing example designs with parameters (finger length (m),
the number of fingers, finger curvature (m−1)).

to grab the object. We regard the simulated grasp as a success if more than three links continuously

make contact with the object for 0.1s or the max velocity of the joint becomes less than the thresh-

old 5e−1. The way of counting the contacts between the object and the gripper is inspired by [29].

If the gripper succeeds to grab the object, it lifts the object vertically for 0.5s. After lifting, it starts

shaking along a sinusoidal wave with amplitude 0.2m and period 0.5s for 5 periods.

We define one design measure and one behavior measure for the performance measures. The

design measure is f1(d) = Gripper-Mass(d)−1. We take the reciprocal of the gripper mass to make

the metric to be maximized. The behavior measure is the elapsed time metric g1(d, θ, e) which mea-

sures the time elapsed from the lifting until the gripper drops the object and the object makes contact

with the ground. To observe the grasp quality averaged over all objects, we useW = [ 1
∣E∣ . . . 1

∣E∣],

∣E∣ = 13 in our experiment. (N+M ∣E∣) = 1+1×13 = 14 Gaussian processes are used during the op-

timization. By eliminating the behavior and environment variables, design metrics are constructed

as below and the metric space is 2-dimensional:

f1(d) = Gripper-Mass−1(d) and (1.12)

f2(d) =
1

∣E∣ ∑e∈E
g1(d, e, θ∗d,e,1) =

1

∣E∣ ∑e∈E
Elapsed-Time(d, e, θ∗d,e,1). (1.13)

We run the optimization with parameter settings (S, fmax,κ) = (20,1000,2.0) for T = 200

iterations. The metric space explored is shown in Figure 1.1, where we can see most of designs

are generated near the Pareto front. Table 1.1 illustrates 4 selected designs from the Pareto front by
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Object 1 2 3 4 5 6 7 8 9 10 11 12 13

Design 1
Mass 168.8

Elapsed-Time 2.274 3.0 2.908 3.0 2.347 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Design 2
Mass 130.2

Elapsed-Time 2.521 3.0 3.0 3.0 3.0 3.0 2.427 1.641 3.0 3.0 3.0 3.0 3.0

Design 3
Mass 111.7

Elapsed-Time 0.5 3.0 2.9 3.0 3.0 2.409 0.5 1.564 1.686 1.278 3.0 3.0 3.0

Design 4
Mass 98.53

Elapsed-Time 3.0 3.0 3.0 2.145 1.360 1.251 0. 0. 0. 0. 1.205 0. 0.

Table 1.1: Four gripper designs from the Pareto Front of Figure 1.1. Images captured during lifting and shaking.
Elapsed-Time indicates how long the object stays held during shaking, in seconds (max 3 s).

Metrics Baseline Sample size (S) Confidence Bound (κ) #func. evals. (maxf )

(50,2.0,1k) 100 20 10 0.0 1.0 5.0 10.0 10000 100 10

Inner Optimization via Uniform sampling / DIRECT

HV 2.703/2.746 2.646/2.693 2.684/2.759 2.713/2.776 2.784/2.871 2.753/2.787 2.580/2.706 2.438/2.543 2.694/2.747 2.624/2.749 2.502/2.553
MS(100/Gripper-Mass) 0.328/0.346 0.248/0.299 0.371/0.290 0.346/0.391 0.245/0.209 0.242/0.329 0.320/0.331 0.436/0.395 0.281/0.321 0.265/0.308 0.296/0.374
MS(Elapsed-Time) 1.739/1.793 1.659/1.718 1.758/1.790 1.755/1.822 1.748/1.825 1.729/1.773 1.658/1.797 1.526/1.656 1.720/1.764 1.632/1.802 1.543/1.621

Table 1.2: The hypervolume (HV) and metric spread (MS) metrics of optimization performance at various
parameter settings, averaged over four trials. The reference point used for HV computation is (0,0). Bold
indicates the top 25% of the observed range.

using the subsampling algorithm mentioned in section 1.4.6.

Effect of Parameter settings Since the gripper design problem is not a high-dimensional problem

and the time spent on experiments can be reduced by parallelization, we were able to analyze the

effect of parameters used in the algorithm. To compare several parameter settings, the performance

of algorithm with each setting should be evaluated by measuring the quality of the Pareto front.

C. Audet et al. [3] reviewed several performance indicators used in multi-objective optimization.

We adopted two measures: Hypervolume(HV) and Metric Spread(MS). Hypervolume is calculated

using Equation (1.3). And, to examine the extents of the spread achieved in the Pareto front, we

define the Metric Spread as the gap between the min and max value of points in the Pareto front. It

is computed for each metric dimension as follows:

max
d∈DPO

fi(d) − min
d∈DPO

fi(d), for i ∈ {1, . . .R} (1.14)

17



(a) S=10 (b) S=20

(c) S=50 (Baseline) (d) S=100

Figure 1.3: The Pareto front by changing the design sample size: 10, 20, 50, and 100.

For both metrics, the larger value means better performance. We observed the effect of parameter

settings by changing the parameter value from the baseline (S,κ, fmax) = (50,2.0,1000). To

reduce the randomness, we conducts 4 trials for each setting, and take average over them. Table

1.2 shows the result. As design sample size S decreases, MS and HV are increased as shown in

Figure 1.3. As κ increases, MS for the mass metric increases, but MS for the elapsed time metric

and HV decreases as shown in Figure 1.4. Those results can be interpreted as the smaller value

of κ and larger design sample size lead to decreasing the randomness when selecting the design

candidate so that the design generation is more focused on the smaller mass region more. fmax

does not affect the performance significantly as much as the other parameters as shwon in Figure

1.5. But larger value in fmaxmake running time of optimization longer. For example, in the case of

fmax = 10000, it takes more than 10 hours to complete 100 designs generation. We also compared

two different ways for the behavior optimization. For many cases, DIRECT works slightly better

than the brute-force uniform sampling method. but DIRECT takes longer computation time (2.97

hours vs 1.66 hours).
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(a) κ = 0.0 (b) κ = 1.0

(c) κ = 2.0(Baseline) (d) κ = 5.0 (e) κ = 10.0

Figure 1.4: The Pareto front by changing kappa: 0.0, 1.0, 2.0, 5.0, and 10.0.

1.5.2 Robot Arm Placement

The second application on co-design problem is robot arm placement problem. We aim to find

the optimal robot arm placement that maximizes the reachability in human environments. The

mounting orientation and shoulder width affect the capability of robot arms a lot, so we have to

carefully choose them. Inspired by the reachability map analysis [53], we simplify reachability

index and use that to construct the performance measure.

The three design parameters include pan angle(range [0○,90○]), tilt angle(range [0○,180○]), and

the shoulder width(range [0.4 m, 0.65 m]). Three exemplary designs are illustrated in Figure 2.1.

The behavior parameters consist of 6 joint angles of the left arm, which will be used as the Inverse

Kinematics(IK) seed for reachability evaluation. Environments are defined picking up scenarios for

ground and table and manipulation scenarios for low-shelf, high-shelf, and table. The scenearios

are illustrated in Figure 2.1. In each scenario, a bounding box workspace is defined and a discretized

grid of position targets with resolution 0.05m are defined in the bounding box as shown in Figure

2.1. We also define goal orientations according to the scenario. For the Ground and Table-vertical
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(a) fmax = 10 (b) fmax = 100

(c) fmax = 1000(Baseline) (d) fmax = 10000

Figure 1.5: The Pareto front by changing fmax: 10, 100, 1000, and 10000.

scenario, a vertical orientation is only tested. In Table-horizontal scenario, we check 6 horizontal

directions with yaw angles: {0○,60○,120○,180○,240○,320○}. For the High-shelf and Low-shelf

scenarios, we consider {−60○,0○,60○} yaw angles.

We use average reachability index over every target positions as a behavior measure g1(d, θ, e),

which represents how the fraction of the workspace is reachable. On each target position, the reach-

ability index is defined as the fraction of reachable orientations. For more details, 6DOF target

pose is specified for each goal orientation, then we solve IK by using a local optimization (Newton-

Raphson) method. We use a local optimization since reachability map constructed by solving IK

globally in [53] is computationally costly to be evaluated for many designs. However the result from

local IK solver is easily affected by the initial guess. Hence, we designate initial guess as behavior

parameters to be optimized.

To choose initial guess efficiently, we generate valid samples of behavior parameters at the

low-level optimization. The valid sample indicates 6-d configuration that makes the end-effector

position within the workspace for each scenario. To generate samples, we randomly sample end-

effector poses within the grid positions, and use a local IK solver to generate a 6-d configuration
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(a) (0.4, 0, 35) (b) (0.5, 30, 80) (c) (0.65, 80, 130)

(d) Ground (e) Low-shelf (f) Table-vertical (g) Table-horiz. (h) High-shelf

Figure 1.6: Robot arm design problem. (a–c) show 3 illustrative designs with design parameters (shoulder width (m),
pan (○), tilt (○) ). (d–h) show test scenarios.

where the initial seed is sampled uniformly at random in the configuration space. We generate at

most 100 samples for each design. Resulting configurations are assigned to the behavior samples to

be used for the behavior optimization in Equation (1.9). If there are no valid configurations found,

we sample 5000 arm configurations uniformly at random and use them as the behavior parameter

samples.

In this problem, (N +M ∣E∣) = 0+1×5 = 5 Gaussian processes are used to approximate the be-

havior measures. To inspect all behavior metrics, behavior measures are mapped into 5 dimensional

metric space by assigning W = I5×5.

fi(d) = g1(d, ei, θ∗d,ei,1) = Avg-Reachability(d, ei, θ∗d,ei,1), for i = 1, . . . ,5. (1.15)

For the initialization, we evaluate 100 designs with valid samples. Then we run 100 iterations

with parameters (S,κ) = (20,2.0). fmax is replaced by 100 or 5000 which are used for valid

sampling method. As a result, 56 designs lie on the Pareto front. A large number of Pareto optimal

designs mean that there is no ideal design that has maximum values for every metric. Table 1.3

shows 4 designs selected by using subsampling algorithm. Each design and behavior pair have
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Scenario Ground Low-shelf Table-vert Table-horiz High-shelf
Legend (# of target orientation reached) 0 1 0 3 0 1 0 6 0 3

Design 1
(0.53m, 73.2○, 84.2○)

Reachability-Index 0.660 0.591 0.159 0.422 0.617

Design 2
(0.49m, 46.5○, 145.4○)

Reachability-Index 0.069 0.054 0.974 0.110 0.328

Design 3
(0.53 m, 13.20○, 140.9○)

Reachability-Index 0.118 0.180 0.581 0.537 0.739

Design 4
(0.51m, 64.03○, 61.49○)

Reachability-Index 0.584 0.108 0.877 0.170 0.888

Table 1.3: Four robot arm designs generated by MO-BBO. Best performers highlighted in bold. [Best viewed in color]

good performance in a few metrics, not for all metrics.

1.6 Conclusion

In this chapter, we proposed MO-BBO, a new algorithm for robot design and behavior co-design

problem having multi-objective and multi-environment settings. We constructed a new acquisition

function used in this algorithm, the Likelihood of Pareto Expansion metric. To address the design-

and environment-dependence of the robot behavior, the acquisition function is optimized in a bilevel

manner, where inner optimization optimizes the behavior for all environments. We applied our al-

gorithm to solve two robot co-design problem. During the optimization, design space and behavior

space are effectively explored resulting in the Pareto front with a wide range.

In the future work, we can apply our algorithm to problems with more complex behavioral

representations. One possible approach is to employ Model-based Reinforcement learning such

as [12] to learn complex controller. Furthermore, we can scale up the problem to very large num-

bers of environments. Behavior optimization and performance measurement for all environments
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would be very expensive. As used in prior works [48], [9], if we were able to parameterize the

environments, we efficiently learn a similar unknown environment using the data from previous ex-

periments. Another approach might be allowing partial promising experiments as like the dynamic

allocation method of training resources is integrated into contextual bandit algorithm in [46].

An interesting question of robot design optimization can be how to integrate users as a part of

the optimization process and allow users to suggest the direction of search, instead of providing

solutions only after optimization is complete. The interactive method could assist users in learning

about complicated robot design problems. To make the optimization more interactive for users,

there are several ways to articulate user opinions or preferences to be used during the optimization.

For example, by specifying the region of interest in objective space, the user can guide the opti-

mization to focus on that region proposed in [59], [43]. Also, there might be a use case where they

do not satisfy the obtained designs or metrics since the metric definition in the numerical equation

cannot represent the robot’s performance well. In this case, we will be able to employ Preference

Learning techniques to obtain user preference over the designs and use it as a guide during the

optimization.

Furthermore, the visualization can be improved to show generated designs to users effectively.

As the design space and the objective space are high-dimensional in general, it is hard to demon-

strate the results with visualization. That is why we proposed the subsampling algorithm to extract

a subset with a manageable size. The subsampling method could be improved by considering dis-

tance in design space as well as the distance in metric space.
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Chapter 2

Robot arm placement of dual-arm robot

used in human environments

2.1 Introduction

TRINA (Tele-Robotic Intelligent Nursing Assistant) is the robot platform being developed by

Team AVATRINA. The operator controls the robot through off-the-shelf VR system, and the robot

interacts with the humans in the remote environments. In the design process, two UR5 robot arms

should be placed on the torso. We propose a new method for the robot arm placement optimization

to satisfy our design goals 1) human-like movement 2) good manipulation performance.

Robot arm base placement affects the manipulation capabilities a lot, such as reachability, ma-

nipulability, and redundancy. So there have been various approaches to optimize the best base

placement for different kinds of robotic systems. Workspace volume is used as the most impor-

tant metric to be optimized in [5], [4], [17]. The reachability map proposed in [53] is also used

to select the base placement in [55], [39]. For the bimanual system, the common reachability map

and the cooperative reachability map are proposed and used as metrics in [10]. However, those

indices lack consideration for the collision and continuous motion. Furthermore, since TRINA has

a mobile base and will be used in human environments like hospitals and offices, the analysis of
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the whole reachable area is unnecessary. The performance in a compact region is a more important

factor rather than the larger workspace volume. It is further supported by the observation that the

locations of the wrists during daily tasks are concentrated in a compact region close to the human

torso [28].

Besides the capability of robot arm, the human-likeness is a key factor to attain safety and social

connection. When the robot conducts human-like robot motion, the human can predict robot’s

behavior easily and execute intuitive interaction with the robot. Also the human-likeness of robot

contributes to increased likeability which facilitates the social connection.

Thus, our goal is to place the robot arm UR5 to the torso by maximizing human-likeness in the

design process as well as the capability to conduct everyday tasks in the human environment. But

the existing approaches applying human-likeness have focused on the motion planning and human to

robot motion mapping problems. For example, motion generation algorithms using human likeness

evaluation metrics are proposed in [54], [23]. And human motion is mapped to the robot reducing

as much structural difference as possible in [33].

In this chapter we present an optimization method for robot arm placement. We propose novel

metrics that evaluate how well the robot follows the human motion trajectories as well as how similar

the structure of the robot arm is to the human arm structure during the motion. We extract the

trajectories from TUM Kitchen Data Set [49] which is human pose data tracked when performing

everyday activities in a kitchen environment. Based on the trajectory-based metrics we construct,

the designs optimized using trajectory-based metrics are compared to the designs optimized using

reachability indices.

2.2 Realated Work

2.2.1 Robot arm placement optimization

M. Bagheri et al. identified a range of upward and forward angle of shoulder base arrangement

by optimizing several performance indices(workspace, manipulability, redundance, and Inertia El-
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lipsoid) [5]. They optimized performance metrics in predefined prioritized order, considering a

single objective at once rather than using multi-objective optimization. These indices were also

used for the development of Bi-manual robot in [4]. Based on [5], J. Duan et al. added dynamic

performance indices and identified the optimal base frame placement [17].

Since the manipulability index calculated at a certain configuration is local measurement, the

index cannot assess the general capability of robot arms. Also the workspace volume analysis

specifies only the reachable positions, which does not consider information of orientations. Instead,

Reachability Index and Capability map [53] have been utilized to find the optimal robot placement

[35], [51] and robot arm mounting position in [10], [39]. We choose to use the Reachability Index

as a baseline metric to compare with our optimization results.

2.2.2 Applications of Human-Likeness

Anthropomorphism is essential to attain safety and social connection through robot likeabil-

ity [16], [18]. The human users prefer robots moving like humans as they feel more comfortable

and safe interacting with them. To facilitate human-robot interaction and collaboration, the human-

likeness should be considered. Human-likeness evaluation has been applied to generate human-like

motion. M. J. Gielniak et al. generates human-like motions for social robots [24]. F. Zacharias et

al. used Rapid Upper Limb Assessment(RULA), the criterion evaluates how ergonomically good

robot’s posture is, for the planning problem in [54]. For the teleoperation, the human-likeness

has been taken into account to map human motion capture data to the robot arm motion. M. V.

Liarokapis et al. [33], [34] proposed metrics that quantify functional anthropomorphism: Volume

of the convex hull, distance between joint positions and human elbow, and area of triangles. The

position and orientation goals is combined with the metric for anthropomorphism into a compos-

ite objective function, a form of weighted sum. Then by optimizing the objective function, they

showed much more anthropomorphic motion is generated rather than using joint-to-joint mapping

and inverse kinematics mapping.

To find robot arm position and orientation that makes them behave most similarly to humans, we
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quantify the similarity to human motion and apply it in the design process. We utilized hand, elbow,

and shoulder position to assess the dissimilarity between the human and robot configurations. The

metrics are described in section 2.3.2.

2.3 Method

2.3.1 Baseline: Reachability based metrics

Reachability Map

The reachability map represents the poses that can be reached in the Cartesian workspace of a

robot arm. The workspace cube is defined and discretized into equally sized smaller cubes. Sphere

is inscribed into each subcube with the diameter equal to the width of the subcube. ThenNp evenly

distributed points are generated on the sphere according to the spiral point algorithm proposed by

Saff et al. [41]. The x-axis is pointing towards its center and the y-axis and z-axis are tangentional

to the sphere surface. The frame is rotated around its x-axis according to a fixed stepsize. Thus,Nr

frames for each point on the sphere are defined. Each resulting frame is considered as a goal pose

and the inverse kinematics(IK) solution is computed. If IK solution exists for one of the rotated

frames at a point on the sphere, that point is marked as reachable.

D = R

Np

⋅ 100 with R ≤ N (2.1)

Howard et al. [28] showed that the majority of elbow and wrist positions lies in front of a human

body during natural everyday movements. Thus, we set frontal area as an area where we investigate

for the reachability rather than analyzing the whole workspace of the robot arm proposed in [53].

The workspace cube is defined as x range [0.4m, 1m], y range [-0.5m, 0.5m], and z range [0.5m,

1.8m]. The subcubes are generated with the resolution 0.1m. The number of approach directions

Np on the sphere is 20. The stepsize for the rotation along x-axis is 60○, then Nr is 6.

For each pose, we solve IK with 10 random restart. Then the collision is checked for terrain and
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other robot links except for the opposite arm as we need to calculate the reachability of each arm

regardless the joint configuration of the opposite arm.

Metric Design

In [39], the mounting pose of robot arm is chosen by comparing workspace volume, high dex-

terity volume (above 75 percent reachability), and path feasibility around the storage areas. The

high dexterity volume is represented in the equation

High dexterity volume = Workspace of the dual arm robot with RI over 75
Workspace Cube

(2.2)

C. Chen et al. [10] proposed two metrics for the robot arm placement problem using reachability

analysis: Effective common area and Effective cooperative area. The common reachability is the

geometric mean of the reachability index of its two arms, as shown in equation (2.3). Cooperative

reachability measures if their end-effector can point to each other, usually required for assembly

tasks. For a point on the sphere that can be reached by the left arm, we checked if a symmetric

point can be reached by the right arm. If the symmetric point is reachable, it is marked as the

reachable point on the sphere in terms of cooperative reachability. Similar to their metrics, we then

defined the effective common area and the effective cooperative area in equation (2.5) and (2.4),

respectively. The global workspace covers an area where each arm can reach, respectively.

Common RI in
subregion X

of dual arm robot
=
√

RI of left arm
mapped into X × RI of right arm

mapped into X (2.3)

Effective common area
of dual arm robot =

Common workspace of the dual arm robot
with common RI over 55

Global workspace of
a dual arm robot

(2.4)

Effective cooperative area
of the dual arm robot =

Cooperative workspace of the dual arm robot
with cooperative RI over 35

Global workspace of
a dual arm robot

(2.5)
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2.3.2 Trajectory based metrics

Workspace analysis has a limitation in that it cannot take into account the collision that occurred

during the motion into the performance metrics. We propose new metrics using the trajectories

collected from human motion. The metrics include how well the robot arm follows the human

motion trajectories in terms of position error, success rate, and collision rate and how human-like

the robot motion is. Trajectory generation is explained in section 2.3.2 and metric construction is

illustrated in 2.3.2.

Trajectory collection from human motion capture data

TRINA robot system’s scenarios include tasks conducted in hospitals and offices, i.e., pick up

and place medical devices, open and close the drawer or cabinet, open the door, etc. We used TUM

kitchen dataset [49] of human motion capture data tracked while the several table-setting tasks,

i.e., opening and closing a door and a drawer, lowering an object, reaching towards an object, and

taking an object. The kinds of everyday tasks interacting with the objects on the table or furniture

are similar for most human environments, so we decided to use this motion data collected in the

kitchen for our case.

Each frame of the dataset has been manually labeled to describe hand motion and indicate if the

subject is moving(’StandingStill’ or ’HumanWalkingMotion’). We extract the trajectory performing

the motion while standing still. We define the valid trajectories if the number of consecutive frames

labeled as ’StandingStill’ exceeds 50. The reason that we only consider motion during standstill is

that we solve IK for the joint angle of the robot arm, not including the degree of freedom of base

movement and robot torso movement. We then transform the pose data to be located in front of the

robot torso by subtracting the x-y pose of Pelvis joint, and adjusting the z-axis rotation. Finally, the

trajectories are translated with x-offset(0.4m) due to the difference between human and robot torso.
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Metric Design

For performance evaluation, we construct metrics that measure human-likeness, collision rate

as well as tracking error while robot end-effector follows the trajectories.

Tracking trajectory A trajectory is represented in milestones recorded in each frame. Each mile-

stone has information of orientation and position of finger extracted from human motion capture

data. For each trajectory, we regard the milestones as target pose in order and use a local inverse

kinematics solver to get the best-found configuration. For the first point, the local IK solver takes the

behavior parameter as an initial guess. After that, the initial guess is the best-found pose generated

after solving IK for the previous milestone. The local IK solver is computationally cheaper than the

global IK solver, however, it is sensitive to initial guesses. Since bad initial guesses cause all points

on the trajectory would be unreachable, we narrowed the sampling region from the configuration

space to increase the success rate. In order to generate valid behavior parameters, we sample end-

effector positions uniformly at random within a region in front of the chest, and orientation is set

as same as the global frame. We then solve IK locally with the initial seed sampled uniformly at

random in the configuration space. Then it ensures that the initial guess of robot arm configuration

has no collision and its end-effector is inside the region of interest. We define the initial 6DOF

configuration as a behavior parameter for each trajectory.

Collision The collision between two arms has not been investigated in reachability analysis. So

we incorporate the collision rate into our metrics to guide the design optimization to a low collision

rate. After solving IK at each milestone, we check the collision including self-collision, collision

with objects, and terrain.

Human-likeness Due to the dissimilarity of structures between the robot and the human, human-

likeness is hard to be measured. We choose to define a plane that contains finger, elbow, and

shoulder joints for human and robot arms. Then the angle between normal vectors of planes is

computed. The smaller difference in angle means that the robot arm’s posture is human-like.
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Formulation At each milestone, we constructed 4 metrics as below:

Success Rate(mL/R
1,i ) = 1 if IK solution exists and no collision. Otherwise 0. (2.6)

Finger Position Error(mL/R
2,i ) = Distance between the finger position and

the best found position of end-effector. (in m) (2.7)

Collision Rate(m3,i) = 1 if there’s collision with Left arm or Right arm. Otherwise 0. (2.8)

Structural Similarity(mL/R
4,i ) = Angle between the normal vectors of the planes

defined by finger, elbow, and shoulder joints. (in rad) (2.9)

where i is the index of milestone in a trajectory. We take average over all milestones in trajectory,

and the length of trajectory is T . We transform equations to the objective function to be maximized.

Then the metrics for each trajectory can be computed as shown in equations (2.10), (2.11), (2.12),

and (2.13).

M1 =
1

2T

T

∑
i=1

mL
1,i +mR

1,i (2.10)

M2 =
1

1 + 1
2T ∑

T
i=1(mL

2,i +mR
2,i)

(2.11)

M3 = 1 − 1

T

T

∑
i=1

m3,i (2.12)

M4 =
1

1 + 1
2T ∑

T
i=1(mL

4,i +mR
4,i)

(2.13)

2.3.3 Optimization method: Multi-Objective Bilevel Bayesian Optimization

The previous approach for the robot arm placement [10] coped with the multi-objective prob-

lem using the weighted sum method, and another one [17] narrowed down the angle range in a

prioritized manner. Those approaches provide one solution but cannot investigate the whole range

of the Pareto Front. Since multiple objectives generally have a conflicting relationship, it is hard

to decide which objective is more important. In our previous work (Chapter 1), we proposed the

co-design optimization method based on the multi-objective BO literature. Since the method can

be applied to the multi-objective co-design problems containing environment-dependent behaviors,

we decided to use this method to optimize the robot arm placement. Thus we can provide a wide
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range of choices to designers rather than giving a single design.

2.4 Experiment

2.4.1 Robot arm design problem

We designate 4 design parameters: distance between shoulder(range [0.1m 0.6m]), pan an-

gle(range [0○, 90○]), tilt angle(range [0○, 180○]), and shoulder height(range [0.8m, 1.5m]). The

shoulder distance and height have not been fully investigated as much as tilt or pan angle in the pre-

vious works for the robot arm placement. For the TRINA robot system, the distance between the

shoulders and height of the shoulder should be considered since it affects the range of area where

the robot occupies and reaches.

Baseline The common and cooperative reachability index may lead the optimization to generate

designs with short shoulder distance since it brings larger region that both arms can reach. However,

short shoulder distance may cause high collision rate during motion. To ensure there’s no collision

between the bases of each arm, we set the range of distance between shoulder to [0.2m, 0.6m].

Otherwise, the design parameters have same ranges with our method. In the optimization setting,

three metrics shown in (2.2), (2.4), and (2.5) are dependent only on the design parameters so that

the behavior parameters do not need to be chosen during the optimization. We generate 150 designs

sampled uniformly at random in design space for the initialization and evaluate these designs. After

initialization, we run 150 outer iterations with parameter setting S = 20. From two trials, 4 designs

lie on the Pareto front in total, and Table 2.1 shows those designs. The designs have similar values

of shoulder width and shoulder height. As shorter shoulder distance makes the common area larger,

most of the designs on the Pareto front tend to have a shorter distance. Also, the pan angle of the

designs has a narrow range: [85○, 90○].
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Metric High Dexterity(Left Arm) Common area Cooperative area
Legend 0 1 0 1 0 1

Design 1
(0.228m, 85.9○, 77.0○, 1.01m )

Metric Value 0.260 0.579 0.444

Design 2
(0.220m, 87.0○, 99.3○, 1.02m )

Metric Value 0.250 0.599 0.446

Design 3
(0.243m, 89.8○, 81.1○, 1.04m)

Metric Value 0.256 0.595 0.443

Design 4
(0.227m, 90.0○, 92.2○, 1.09m)

Metric Value 0.247 0.632 0.451

Table 2.1: Four robot arm designs generated by MO-BBO with Reachability-based metrics. Best performers high-
lighted in bold.

Our Method We constructed metrics as represented in (2.10), (2.11), (2.12), and (2.13). The

metrics are evaluated in 11 trajectories from scene 13 of TUM Kitchen dataset. Then for each

metric, we take the mean value over all trajectories as a score for each design and the dimension

of objective space is 4. As the environment-dependent metrics are more than one, the inner opti-

mization that selects design- and environment-specific decision becomes multi-objective problem.
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(a) (0.3, 70, 50, 1.0) (b) (0.5, 45, 150, 0.8) (c) (0.6, 20, 100, 1.2) (d) Reachability (e) Trajectory

Figure 2.1: Robot arm placement problem. (a–c) show 3 illustrative designs with design parameters (shoulder width
(m), pan (○), tilt (○), shoulder height (m)). (d) positions checked for reachability analysis. (e) trajectory from TUM
Kitchen dataset

So we changed the inner optimization instead of using upper bound optimization used in [30]. We

defined a new function that is almost same with the Likelihood of Pareto Expansion (LPE) metric

scores used for the selection of the next design in [30].

Consider a candidate design d ∈ D. We want to select behavior from a set B of valid behavior

samples. For each behavior θ ∈ B, we evaluate the mean µm,e(d, θ) and variance σ2
m,e(d, θ) of

GPm,e at [d, θ]. Given design d and environment e, the mean and covariance matrix of ith metric

is [µ1,e,⋯, µ4,e]T and diag(σ1,e,⋯, σ4,e). Then we draw K samples {m(k)(d, θ)∣k = 1, . . . ,K}

from the posterior Gaussian distribution. The following equation g is the ratio of the number of

non-dominated samples by the current Pareto front PF:

g(d, θ) = 1

K

K

∑
k=1

1[m(k)(d, θ) ≻ PF] (2.14)

The optimal behavior for design d is chosen by solving the following optimization:

θ∗ = max
θ
g(d, θ) (2.15)

After selective θ∗, the next design candidate is selected in the same way with [30].

We generate 50 designs sampled uniformly at random in design space and for each design we

evaluate metrics with 3 different valid behavior parameter samples for the initialization. Then we

run 150 outer iterations with parameter setting S = 20, ∣B∣ = 20, where B is a set of valid behavior

samples. 8 designs lie on the Pareto front. Among them, we select three designs with a success
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Trajectory 1 2 3 4 5
Legend Blue: IK success & no collision / Yellow: IK success & collision / Red: IK failure

Design 1
(0.441m, 15.4○, 98.3○, 1.29m)

M1 (0.809) 0.347 0.673 0.980 1.0 0.769
M2 (0.959) 0.786 0.972 1.0 1.0 0.973
M3 (0.982) 1.0 1.0 0.961 1.0 0.983
M4 (0.426) 0.405 0.529 0.352 0.420 0.499

Design 2
(0.562m, 29.8○, 52.1○, 1.28m)

M1 (0.851) 0.754 0.647 0.951 0.906 0.605
M2 (0.989) 0.982 0.947 0.993 1.0 0.972
M3 (0.911) 0.932 0.971 1.0 0.902 0.714
M4 (0.548) 0.567 0.567 0.492 0.487 0.565

Design 3
(0.385m, 25.6○, 26.7○, 1.39m)

M1 (0.840) 0.890 0.709 0.951 0.947 0.618
M2 (0.971) 0.983 0.970 0.996 0.988 0.974
M3 (0.970) 0.915 0.971 0.980 1.0 0.798
M4 (0.609) 0.336 0.601 0.658 0.606 0.506

Table 2.2: Three robot arm designs generated by MO-BBO with Trajectory-based metrics. Five trajectories are selected
among 11 trajectories used for the optimization. Bold indicates metric value averaged over 11 trajectories. Blue color
indicates the structural similarity score.

rate averaged over 11 trajectories greater than 0.8, and Table 2.2 shows selected designs. Overall,

three designs have high scores of M1,M2,M3. However, the M4 is significantly different for each

design. The robot arm placement with a smaller tilt angle generates a more similar structure to the

human arm.

2.4.2 Comparison

Test Environment For the comparison, we should investigate in new scenarios. Unseen trajecto-

ries are extracted from TUM Kitchen Dataset except for scene 13 that is already used for trajectory-

based optimization. In total, 128 trajectories are used for the comparison.
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Approach Design Parameters Success Rate Finger Pose Error Collision Rate Structural Similarity

Reachability-Based (0.218m, 85.9○, 77.0○, 1.01m) 0.275 0.947 0.649 0.438
(0.217m, 90.0○, 92.2○, 1.09m) 0.345 0.964 0.646 0.386

Trajectory-Based
(0.441m, 15.4○, 98.3○, 1.29m) 0.751 0.959 0.929 0.423
(0.562m, 29.8○, 52.1○, 1.28m) 0.673 0.931 0.880 0.530
(0.385m, 25.6○, 26.7○, 1.39m) 0.665 0.952 0.804 0.597

Table 2.3: The test result of selected designs generated from two approaches: Reachability-based and
Trajectory-based. The metric value is average over unseen 128 trajectories from 18 scenes of TUM dataset
except for scene 13. For the designs generated by reachability based optimization, the metric values are
averaged over three trials.

Selection of Initial configuration Initial configuration affects a lot when solving IK problem lo-

cally. We have to pick one behavior parameter carefully for the test trajectories. Since Reachability-

based metrics are dependent only on design parameters, behavior parameters are not optimized. So

we generate 100 valid samples and select one of them to be used for the test. Using each sample as

an initial guess, we compute the four metrics defined in 2.3.2 for 11 trajectories that were already

used for trajectory-based optimization. We select one with maximum hypervolume in the metric

space, where hypervolume is computed as the multiplication of four metric values, as the reference

point is origin (0,0,0,0). On the other hand, our method using trajectory-based metrics generates

11 behavior parameters according to 11 trajectories. Similarly, we compute hypervolume for those

behavior parameters and pick one with the maximum hypervolume to be used as the initial guess

for the test trajectories.

Result Design 1 and 4 in Table 2.1 and design 1, 2, and 3 in Table 2.2 are used for the comparison.

The shoulder distance and height of optimized designs are larger in trajectory-based approach. Too

short shoulder distance can be avoided in our method, since collision is checked over all milestones

of dual-arm motions. It concludes that the collision is predicted more accurately in our method.

As shown in 2.3, the three designs optimized using trajectory-based metrics have lower values

inM1,M2,M3 for test trajectories than the scores in Table 2.2, whereas structural similarity metrics

are consistent across different trajectories. Compared to those designs, the two designs optimized

for the reachability-based metrics have a lower success rate. However, the finger pose error score is

greater than 0.9, which means that in most milestones there exist IK solutions but collisions at the
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same time. The distance between two shoulders is too short in those cases, which leads to the high

collision rate.

As we generate a wide range of solutions with multiple objectives, there is no ideal design. 3

selected designs generated in the trajectory-based approach have different characteristics. Design

1 in Table 2.2 is best for the success rate and collision rate, but the structural similarity score is the

lowest. In contrast, design 3 has the highest structural similarity, while the success rate and collision

rate are lower than design 1. Design 2 is in the middle of them. Eventually, the final choice among

designs on Pareto front is up to the designers.

2.5 Conclusion

We presented new metrics for the robot arm placement problem. Our main idea was to use the

human motion capture data to construct metrics that can evaluate the capability and the human-

likeness of the dual-arm robot system. The trajectory-based metrics can effectively guide the opti-

mization by avoiding designs that collide much and generating designs with a wide range of human-

likeness.

In future work, the TRINA team plan to take into account the tilting motion of the torso and

base movement when solving IK. If IK can be solved considering those DOFs, motion capture data

with label ’HumanWalkingMotion’ can be used too. The failure case might be overcome and it may

change the optimization result. Also, we selected the initial configuration for the test environments

from a set of configuration candidates randomly sampled, which makes the performance worse

than for trajectories used for the optimization. If we can parameterize environments, we might be

able to select promising behavior parameters even for environments that are not used during the

optimization.

In this work, we measure the human-likeness using the angle difference between the planes de-

fined by the positions of joints to measure human-likeness. However, the human-likeness property

is hard to formulate in the equation, since it depends on how humans recognize the robot’s motion
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and posture. In future work, preference learning techniques such as [37], [8] can be applied to learn

the human preference of the robot’s posture and motion and use the learned function as a metric

instead of the heuristically designed metrics.
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